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The Stockholm Convention on Persistent 
Organic Pollutants (POPs) entered into force 
in 2004 and mandates restriction and eventual 
elimination of selected chemicals at an inter-
national level to protect human health and the 
environment [United Nations Environment 
Programme (UNEP) 2009]. Article 16 of the 
convention requires an effectiveness evalua-
tion of measures taken to reduce emissions 
of POPs. To this end, a global monitoring 
plan is currently being developed with the 
goal of detecting trends in levels of POPs in 
air, human milk, and human blood over time 
(UNEP 2007). The prospective character of 
this global monitoring plan will make it pos-
sible to control variables such as age and, for 
females, parity of donor individuals.

So far, long-term trends of POPs in 
humans have often been evaluated retro-
spectively by collecting several sets of cross-
sectional data (CSD), each describing levels 
in human tissue in different individuals at 
one point in time. Summary statistics such 
as arithmetic means and medians of CSD 
obtained at different times are used to 
assemble time series from which a trend can 
be derived. Here, we refer to time trends 
derived from CSD as “cross-sectional trend 
data” (CSTD). Declining trends in CSTD 
typically occur after use and production of a 
chemical has been restricted or banned, and 

are often fitted with exponential functions 
(Craan and Haines 1998; Erdogrul et  al. 
2004; Jaraczewska et al. 2006; Minh et al. 
2004; Noegrohati et  al. 1992; Norén and 
Meironyté 2000; Smith 1999). Exponential 
fitting, that is, log-linear regression, is also a 
method proposed in the global monitoring 
plan (UNEP 2007).

Presently, no consistent nomenclature 
exists to describe this CSTD-based half-life or 
its corresponding rate constant. Noegrohati 
et al. (1992) used the expression “disappearance 
rate constant,” Norén and Meironyté (2000) 
used the term “decline half-time,” Sjödin 
et al. (2004) used “populational half-life,” and 
Smith (1999) used “population level half-life” 
to distinguish it from the human elimination 
half-life. CSTD-derived half-lives have also 
been referred to as “human half-life” (Woodruff 
et al. 1994), “half-life in humans” (Al-Saleh 
et al. 2003; Ennaceur et al. 2007; Solomon and 
Weiss 2002; Wolff 1999), and “half-life in the 
human body” (Cocco et al. 2000).

Two factors have been reported in the 
literature as influencing the CSTD-based 
half-life. The first is the trend of exposure or 
intake. It is intuitively apparent that a declin-
ing trend in exposure will result in a declin-
ing trend in CSTD. Accordingly, CSTD 
studies of human blood or milk are used as 
markers of exposure and to track reductions 

in exposure (UNEP 2007; World Health 
Organization 2007). The second factor that 
has been reported to influence CSTD-based 
half-lives is the rate of elimination of a sub-
stance from the body by all possible pathways, 
which we refer to as the “human elimination 
half-life.” Currently, however, the influence 
of exposure trend and elimination kinetics 
on CSTD-derived trends is unclear, and a 
range of different interpretations exists in 
the literature. For instance, the CSTD-based 
half-life has been interpreted to reflect both 
elimination kinetics and intake trend (Sjödin 
et al. 2004), to be consistent with the half-
life derived from sequential measurements 
in individuals (Wolff 1999), or to be con-
founded by ongoing exposure (Minh et al. 
2004). Both a single-individual pharmaco
kinetic (PK) model (Aylward and Hays 2002) 
and a multi-individual PK model (Lorber 
2002) have been applied to describe the trend 
observed in CSTD. This variability in inter-
pretations reflects the lack of a mechanistic 
description of the CSTD-based half-life and 
the lack of standard nomenclature.

In contrast to CSTD, which represent 
the population level, the role of the time 
trend of intake and of elimination kinet-
ics is well established for single individuals. 
Concentration trends in individuals, which 
are referred to as “longitudinal data” (LD) 
(Tee et al. 2003), have been mechanistically 
described by single-individual PK models of 
different complexity (van der Molen et al. 
1996; Verner et al. 2008). In LD, the trend 
in body burden is determined by both the 
intake trend and elimination kinetics. As a 
consequence, background intake is a possible 
confounding factor in estimates of the human 
elimination half-life from LD when complete 
isolation from ongoing exposure is not fea-
sible (Shirai and Kissel 1996).
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Background: Human milk and blood are monitored to detect time trends of persistent organic 
pollutants (POPs) in humans. It is current practice to use log-linear regression to fit time series of 
averaged cross-sectional biomonitoring data, here referred to as cross-sectional trend data (CSTD).

Objective: The goals of our study are to clarify the interpretation of half-lives derived from fitting 
exponential functions to declining CSTD and to provide a method of estimating human elimina-
tion half-lives from CSTD collected in a postban situation.

Methods: We developed a multi-individual pharmacokinetic model framework and present 
analytical solutions for a postban period. For this case, the framework quantitatively describes the 
relationships among the half-life for reduction of body burdens of POPs derived from CSTD, the 
half-life describing decline in daily intake, and the half-life of elimination from the human body.

Results: The half-life derived from exponential fitting of CSTD collected under postban conditions 
describes the exposure trend and is independent of human elimination kinetics. We use a case study 
of DDT (dichlorodiphenyltrichloroethane) to show that CSTD can be combined with exposure 
data obtained from total diet studies to estimate elimination kinetics of POPs for humans under 
background exposure conditions.

Conclusions: CSTD provide quantitative information about trends in human exposure and can be 
combined with exposure studies to estimate elimination kinetics. The full utility of these data has not 
been exploited so far. An efficient and informative monitoring strategy for banned POPs in humans 
would coordinate sampling of consistent sets of CSTD from young adults with total diet studies.
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The present study has two major goals. 
The first is to clarify the interpretation of half-
lives derived from CSTD fitted with an expo-
nential function by using a transparent and 
mathematically explicit model of the relation-
ships among a) CSTD-based half-life, b) time 
trend of intake, and c) the human elimination 
half-life, in a postban period. The second goal 
is to provide a new approach to estimating 
human elimination half-lives; this approach 
uses CSTD that represent the adult popula-
tion under background exposure conditions in 
combination with exposure studies.

Methods
To derive our multi-individual PK framework, 
we first formulated a one-compartment PK 
model for a single individual with a time-
dependent intake function, I(t), which is 
assumed to decline exponentially in a post-
ban phase with a first-order rate constant kdec 
(years–1):

	 I (t ) = I0 × e –kdec × t,	 [1]

where t (years) is time (starting at t0, where 
t0 = 0 in the following equations), and I0 is 
the intake (nanograms per person per day) at 
t0. This intake function is shown in Figure 1A. 
Other intake functions can also be used if the 
model is solved numerically [see Supplemental 
Material (doi:10.1289/ehp.0900648.S1)].

In most cases, human exposure to 
POPs occurs mainly through dietary intake 
(Darnerud et al. 2006). In this context, we 
use the term “intake” as synonymous with 
background exposure. The one-compartment 
PK model for an individual born at t0 is rep-
resented by the following first-order differen-
tial equation:
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where C(t) is the concentration (nanograms 
per gram lipid) in the body on a lipid-
normalized basis (also referred to as body 
burden) as a function of time, kelim (years–1) 
is the first-order rate constant for elimination 
of contaminant from the human body, bw 
is body weight in kilograms, flipid (dimen-
sionless) is the lipid fraction of the human 
body, and U is a unit conversion factor 
(days × year–1 × kg × g–1). Ea (dimensionless) 
describes the fraction of chemical absorbed 
(i.e., intake × Ea = uptake) and is set at 0.9 
(Moser and McLachlan 2001). In some con-
texts, it is more common to use a half-life 
rather than a rate constant. The human elimi-
nation half-life follows from the rate constant 
as t 1/2

elim (years) = ln(2)/kelim. Analogously, 
t1/2

dec (years) = ln(2)/kdec denotes the half-life 

describing the decline of intake. Integrating 
Equation 2 with boundary condition C(t0) = 
0 yields a function describing the body bur-
den as a function of time for an individual 
born at t0 for kdec ≠ kelim:
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[For the derivation of this solution and 
the solution for the special case kdec = kelim, 
see Supplemental Material (doi:10.1289/
ehp.0900648.S1).] This equation can be gen-
eralized to a family of equations for individu-
als born at tbirth ≠ t0 by, first, substituting I0, 
the intake at time t0, by Ibirth, the intake at the 
time of birth of each individual:

	 Ibirth = I0 × e –kdec × tbirth,	 [4]

and second, introducing a variable tage that 
describes the age of an individual born at tbirth 
and is given by tage = t – tbirth. The function 
C(t) from Equation 3 is then generalized to a 
function in two variables, tbirth and tage:
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This general equation can be used to 
explain three types of concentration–time rela-
tionships. The first is the time course of LD 
for an individual that enters the population 

Figure 1. Schematic overview of the model framework. (A) Background daily intake, I(t) (Equation 1). 
(B) Modeled LD (Equation 6), representing the time trend of single individuals, modeled CSTD (Equation 7), 
and modeled CSD as functions of time. (C) Modeled CSD from (B) shown as a function of age (Equation 9).
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in year tc
birth. Here, we set tbirth at a constant 

value, tc
birth, and consider only tage as a vari-

able (Figure 1B):
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with KLD as a constant independent of tage. 
Equation 6 is analogous to one-compartment 
PK equations describing the time course of 
concentration in the body over hours or days 
after drug administration in an individual. 
However, in the long-term context applied 
here (years), Equation 6 describes the body 
burden over the lifetime of an individual that 
enters the world as an adult at t = t c

birth. In 
reality, early life years are characterized by 
important physiologic changes (e.g., growth) 
and changes in intake (e.g., end of breast-
feeding). Therefore, the concentration course 

shown for early life years as dashed lines in 
Figures 1–3 should not be interpreted as esti-
mates of actual concentration–time courses; 
these parts of the curves are plotted for illus-
trative purposes only.

The second relationship derived from 
Equation 5 is the concentration time course 
observed in CSTD. CSTD represent a time 
trend in data taken from groups of individu-
als at different times. Each data point in the 
time trend represents the arithmetic mean 
or median of measurements in several indi-
viduals; that is, each of the data points in a 
set of CSTD is representative of the cohort 
sampled in the underlying cross-sectional 
study. To be comparable, all CSD sets that 
are used to build the CSTD should represent 
a population with the same or at least similar 
characteristics such as age, body weight, and 
parity. We refer to empirical CSTD that have 
been derived from similar CSD sets as “con-
sistent CSTD.” We define tc

age as the constant 
“characteristic age” that is representative of the 
cohorts measured in all CSD sets included in 
a set of consistent CSTD. In our framework, 

each set of CSD is modeled as an average 
individual representing a specific birth cohort 
born at tbirth and measured at age tc

age. With 
constant tc

age we can derive from Equation 5 
an explicit expression for CSTD as function 
of tbirth:

,
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with KCSTD as a constant independent of 
tbirth. Equation 7 is illustrated in Figure 1B.

Third and finally, Equation 5 can be used 
to derive an explicit relationship between con-
centration and age as measured in CSD at a 
specified time. If we recall that t = tbirth + tage 
and, thus, tbirth =  t –  tage, replacing tbirth by 
t – tage in Equation 5 yields
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In a set of CSD, the time t at which the 
CSD were measured is constant, here denoted 
by tm. Equation 8 can then be simplified to 
an expression for concentration as function 
of age:
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with KCSD as a constant independent of tage. 
Equation 9 is illustrated in Figure 1C.

Results
Properties of modeled CSTD. Equation 7 pro-
vides two new insights into the exponential 
decay function that has been fitted to CSTD 
in numerous publications. First, Equation 7 
demonstrates that in a postban situation the 
half-life derived from exponential fitting of 
CSTD is equal to the half-life of decline in 
intake, t1/2

dec, and is completely independent of 
human elimination kinetics. Second, the ini-
tial value of the exponential function, KCSTD, 
is now mechanistically characterized, which 
reveals the influence of specific PK parameters 
on CSTD. These two insights provide the basis 
for a new methodology to estimate a human 
elimination half-life, t1/2

elim, that is representative 
of the general adult population under back-
ground exposure conditions.

Figure 2. Influence of human elimination half-life, t1/2
elim, and characteristic age, t c

age, on modeled CSTD and 
CSD. We assume an initial daily intake, I0, of 20,000 ng/person/day for two chemicals: chemical 1, with 
t1/2

elim = 8 years, and chemical 2, with t1/2
elim = 3 years; the half-life of decline in exposure, t1/2

dec, is the same 
for both chemicals and is assumed to be 12 years. (A) For the slowly eliminated chemical 1, concentra-
tions in humans are higher than for the more rapidly eliminated chemical 2. In addition, the trend lines for 
two characteristic ages, 20 years and 40 years, are separated for chemical 1 but are almost identical for 
chemical 2. However, all four CSTD lines are parallel and reflect, according to Equation 7, the half-life in 
decline of intake, t 1/2

dec, of 12 years. “Preadult” indicates < 20 years of age. (B) Modeled CSD, calculated for 
the year 2002, as a function of age. Only the slowly eliminated chemical 1 shows a significant increase of 
concentration with age.
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Figure 2A illustrates the influence of 
changes in kelim and tc

age on modeled CSTD. 
A change in kelim causes a parallel shift of 
the logarithmic CSTD function. As can be 
deduced from Equation 7, other parameters 
such as I0, bw, Ea, and flipid will also change 
the value for KCSTD and thus cause a paral-
lel shift of the CSTD function. However, as 
stated above, the slope of the CSTD function 
is solely determined by the rate constant of 
the intake trend, kdec. Figure 2A also shows 
that chemicals with slower elimination show 
larger differences in concentrations meas
ured in individuals of different ages that may 
be included in CSD. Hence, the slower the 
elimination kinetics of a chemical, the more 
important it is to include only empirical CSD 
with consistent age structure in the time trend 
analysis.

The relationship of body burden and 
age is explicitly described by Equation 9, 
which is illustrated in Figure 2B. As shown 
in the Supplemental Material (doi:10.1289/
ehp.0900648.S1), the relationship between 
concentration and age is only linear if kelim = 
kdec; otherwise, the relationship is described by 
either a convex or concave curve, as has been 
reported in earlier modeling studies (Alcock 
et al. 2000; Moser and Mclachlan 2002).

Model application: a case study of DDT 
(dichlorodiphenyltrichloroethane). Besides 
providing an analytical model to clarify the 
interpretation of the CSTD-based half-life, 
the second goal of this study is to employ the 
model to obtain information on human elimi-
nation kinetics from CSTD. In particular, 
we estimated human elimination half-lives of 
p,p´-DDT and p,p´‑dichlorodiphenyldichloro
ethylene (p,p´‑DDE) by applying Equation 7 
to CSTD from Sweden (Glynn et al. 2007). 
We present a five-step procedure, graphically 
illustrated in Figure 3, that has been imple-
mented in an MS Excel spreadsheet (Microsoft 
Corporation, Redmond, WA, USA) that is 
available for download (ETH Zurich, Safety 
and Environmental Technology Group 2009).
•	Step 1: Collect and assemble CSTD, includ-

ing only individuals whose life history (or at 
least the major part of it) falls in the postban 
period [i.e., after 1970 for DDT in Sweden 
(Hayes 1969)]. 

•	Step 2: Estimate kdec from the CSTD by 
log-linear regression. 

•	Step 3: Use at least one empirical intake 
estimate, such as data from a total diet 
study, in combination with the slope kdec 
from step 2 to describe the time trend of 
the intake as in Equation 1, again on a log-
linear scale. 

•	Step 4: Extrapolate the function I(t) from 
step 3 to the daily intake at t0, I0. 

•	Step 5: Estimate the human elimination rate 
constant, kelim, by fitting Equation 7 to the 
empirical CSTD. Because kdec and I0 have 

been estimated from the slope of the CSTD 
and the total diet study in steps 2 and 4, kelim 
is the only fitting parameter in Equation 7.

In principle, kdec could be derived from 
total diet studies rather than from CSTD. 
However, comprehensive sets of CSTD 
will become available from biomonitoring 
programs such as the National Health and 
Nutrition Examination Survey (NHANES) 
[Centers for Disease Control and Prevention 
(CDC) 2009] and the effectiveness evalua-
tion of the Stockholm Convention, which 
will provide a consistent basis for estimating 
kdec of various chemicals in many parts of the 
world. In addition, at least a few, ideally sev-
eral, total diet studies for the same population 
groups are needed to provide information 
on I0; if these studies also yield an estimate 
of kdec, this can be used to cross-check the 
CSTD-based estimate.

Figure 3 illustrates the steps of this proce-
dure with DDT and DDE data from Sweden. 
Step  1 yields t 1/2

dec values of 6.3  years and 
8.8 years for p,p´‑DDT and p,p´‑DDE, respec-
tively. We took the intake estimates needed 
for steps 3 and 4 (open and solid circles in 
Figure 3A) from two Swedish market-based 
studies from 1999 (Darnerud et al. 2006) and 
2005 (Ankarberg et al. 2006). Because only the 
sum of DDTs (ΣDDT) and p,p´‑DDE were 
reported explicitly, we estimated p,p´‑DDT 
intakes as 25% of p,p´‑DDE intakes accord-
ing to findings from two dietary-intake stud-
ies from Canada (Rawn et  al. 2004) and 
Greenland from the same time (Deutch et al. 
2006). To assess the plausibility of the intake 
trends for p,p´‑DDE and p,p´‑DDT extrapo-
lated in steps 3 and 4 (solid and dashed lines in 
Figure 3A), we collected additional empirical 
intake estimates that were available only for 

Figure 3. Illustration of the five-step procedure for estimating human elimination half-lives: results for 
p,p´-DDE and p,p´-DDT are based on empirical data from Sweden (Ankarberg et al. 2006; Darnerud 
et al. 2006; Glynn et al. 2007). (A) Modeled and empirical daily intakes used in steps 3 and 4 of the 
procedure. (B) Modeled and empirical CSTD used for steps 1, 2, and 5 of the procedure. Each circle 
represents the average of one set of CSD. See “Model application: a case study of DDT (dichlorodiphenyl
trichloroethane)” for a detailed description of the five-step procedure. For additional information, see 
Supplemental Material, Tables S1 and S2 (doi:10.1289/ehp.0900648.S1).
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ΣDDT (Vaz 1995). To compare them with 
the model results, we calculated the sum of 
the modeled intake curves for p,p´‑DDE and 
p,p´‑DDT (dotted line in Figure 3A). Modeled 
and empirical intake trends of ΣDDT are in 
good agreement. Modeled intake is slightly 
below the empirical ΣDDT data possi-
bly because modeled ΣDDT includes only 
p,p´‑DDE and p,p´‑DDT, whereas empirical 
ΣDDT also includes dichlorodiphenyldichloro
ethane (DDD) and o,p´‑isomers.

Using the five-step procedure, we 
obtained estimates of the human elimination 
half-lives, t1/2

elim, of 6.2 years for p,p´-DDE 
and 2.2 years for p,p´‑DDT. Our estimate 
for p,p´‑DDE is slightly lower than estimates 
from sequential measurements in individu-
als (i.e., LD). Wolff et al. (2000) obtained a 
median elimination half-life of 8.6 years. For 
p,p´‑DDT Morgan and Roan (1972) derived 
an elimination half-life of 1.25 years from 
measurements in three individuals who had 
received high doses of 5–20 mg/day. This 
compares well with our estimate of 2.2 years 
for individuals exposed to background lev-
els. A slightly faster elimination in the highly 
dosed individuals is expected because of the 
concentration dependency of the elimination 
half-life (Leung et al. 2007). We conducted 
a second case study using data from the 
United Kingdom [see Supplemental Material, 
Table S3 (doi:10.1289/ehp.0900648.S1)]. 
Elimination half-lives of 7.6  years and 
2.1  years for p,p´‑DDE and p,p´-DDT, 
respectively, are in very good agreement with 
the estimates from the Swedish data.

From the most general equation of our PK 
framework, Equation 5, we have also derived 
an explicit equation for the body burden meas
ured in CSD as a function of age. This equa-
tion, Equation 9, predicts body burdens of 
chemicals with relatively short elimination 
half-lives to be less dependent on age. This 
is consistent with empirical data for DDT, 
DDE, and different polychlorinated biphenyls 
(PCBs) (Greve and Vanzoonen 1990; Thomas 
et al. 2006). For a more detailed description of 
the properties of Equation 9, see Supplemental 
Material, Figure S1 and Equation  S26 
(doi:10.1289/ehp.0900648.S1).

Discussion
Our analysis provides a transparent interpreta-
tion of the half-lives derived from exponential 
fitting of CSTD. We show that in the postban 
phase these half-lives reflect a mechanistically 
defined quantity—the decline of intake by the 
population—and are independent of human 
elimination kinetics. To identify CSTD-based 
half-life estimates from a postban phase unam-
biguously, we suggest they be referred to as 
“population exposure half-life.”

In cases where individuals included in the 
CSTD have spent a significant fraction of their 

lifetime in a preban period, declining trends 
may be observed in the CSTD that can also 
be reasonably fitted with an exponential func-
tion (Craan and Haines 1998; Norén and 
Meironyté 2000). However, in such cases the 
half-life derived from the empirical fit does 
not reflect a mechanistically clearly defined 
quantity. Rather, it reflects influences of the 
intake trend, which in this case also includes 
preban intake, the elimination half-life, and 
the characteristic age of the sampled popula-
tion [see Supplemental Material, Figure S2 
(doi:10.1289/ehp.0900648.S1)]. Under any 
exposure conditions, CSTD-derived half-lives 
are specific to the characteristics of the sampled 
population and the exposure trend, and not 
individual humans. Therefore, terms including 
“human” should be avoided when referring to 
half-lives derived from CSTD.

For a postban period, our analysis clarifies 
the relationships among a) CSTD-based half-
life, b) time trend of intake, and c) the human 
elimination half-life. In this case, the trend 
in CSTD directly reflects the trend in expo-
sure; therefore, exponential fitting of CSTD 
implies the assumption that intake is declining 
exponentially. For DDT, this is supported by 
total diet studies presented in Figure 3 and 
elsewhere (Morisawa et al. 2002). Empirical 
evidence shows that the assumption of first-
order declining intake is also reasonable for 
other chemicals such as dioxins and PCBs 
(De Mul et al. 2008). Furthermore, expo-
nential fitting implicitly assumes that the sets 
of CSD used to derive the CSTD have been 
obtained from similar groups of individuals. 
This implicit assumption allows us to model 
CSTD using a one-compartment PK model 
that represents individuals with the same aver-
age characteristics but born in different years. 
As a consequence, the solutions to the PK 
model in Figure 1A do not provide informa-
tion about interindividual differences, nor do 
they account for complete lifetime exposure 
profiles.

Physiologic factors are implemented as 
constant values in the model, that is, as inde-
pendent of age. This simplification makes it 
possible to solve the model analytically; it is 
supported by two findings. First, background 
intake and body weight are generally assumed 
to be proportional in adults (i.e., intake is 
expressed in units of nanograms per kilogram 
of body weight per day). Under this assump-
tion, a one-compartment model parameterized 
for average adults, as presented in Equation 2, 
is equivalent to a one-compartment model 
parameterized with age-dependent body 
weight and background intake proportional 
to body weight [see Supplemental Material 
(doi:10.1289/ehp.0900648.S1)]. Second, large 
changes in daily intake, as they occur in early 
life years (e.g., due to breast-feeding), also have 
large effects on the body burden (Moser and 

McLachlan 2002). However, these concentra-
tion peaks level out no later than 20 years of 
age (Kreuzer et al. 1997; Verner et al. 2008). In 
other words, predictions of concentrations in 
average adults as they are represented in CSTD 
are not strongly influenced by differences in 
body burdens occurring during early life years 
due to different breast-feeding regimes (Lorber 
2002). If required, the conceptual framework 
developed here could also be set up with age-
dependent physiologic parameters and more 
general intake functions. In such cases, numeri-
cal integration of the model will be necessary.

Scope of the model framework. Our model-
ing framework can also be applied to cases that 
are different from the DDT example. First, the 
intake function, I(t), can represent any intake 
pathway, not only food. In addition, when the 
model is solved numerically, I(t) can have any 
shape [see Supplemental Material, Figure S2 
(doi:10.1289/ehp.0900648.S1)]. This means 
that the model framework is not limited to 
postban cases. Second, for chemicals stored in 
parts of the body other than lipids, bw × flipid in 
Equation 2 can be replaced by a description of 
the actual storage medium, such as the volume 
of distribution for perfluorinated chemicals. 
Finally, application of the framework is not lim-
ited to persistent chemicals with slow elimina-
tion. However, for chemicals that are eliminated 
quickly, kelim can be more readily derived from 
LD collected from single individuals (Koch and 
Angerer 2007). Our modeling framework is 
therefore most powerful when applied to chem-
icals with slow elimination kinetics such as 
DDT for two reasons. First, LD studies aiming 
to estimate kelim of slowly eliminating chemi-
cals are difficult to perform because subjects 
must be tracked over several years, and fasting 
to eliminate background exposure is not fea-
sible. Second, as demonstrated in Figure 2A, 
CSTD of slowly eliminating chemicals can only 
be described by a multi-individual PK model as 
presented here.

Model application and performance. 
For many persistent chemicals, information 
about human elimination half-lives is scarce 
(Wolff 1999), and available data exhibit a 
high degree of uncertainty. For instance, a 
review of PCB elimination half-lives found 
reported values ranging from < 1 year to vir-
tually infinity even within a specific conge-
ner group (Shirai and Kissel 1996). Different 
methods have been applied to estimate human 
elimination half-lives. A common method is 
to use sequential measurements in individuals 
who experienced high exposure for a limited 
time period (e.g., occupational exposure, acci-
dent). High-exposure cases are chosen in LD 
studies to mitigate the problem of ongoing 
background exposure (Grandjean et al. 2008). 
However, half-lives derived from such cases 
may be not representative for the general 
population because the rate of elimination 
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has been shown to depend, to some extent, 
on the absolute level of body burden (Leung 
et al. 2007). An alternative approach to the 
problem of confounding through ongo-
ing exposure is to account for it in the PK 
model used to estimate the elimination half-
life. Such an expression has been presented 
for a constant intake (steady-state situation) 
(Shirai and Kissel 1996). However, because 
intake often changes over time, integration of 
the actual intake trend (rather than assuming 
steady state) would be desirable, but infor-
mation about intake of measured individuals 
is rarely available. Here we have shown how 
time trend information present in CSTD can 
be combined with information from total-
diet studies to determine the intake trend and 
the whole body elimination half-life for the 
general adult population. To our knowledge, 
our method represents the first approach that 
uses CSTD to estimate human elimination 
half-lives. The further advantage is that CSTD 
are available in many countries and represent 
a broad empirical basis, whereas LD-inferred 
half-lives are often based on very few (often 
only two) measurement points (Phillips 1989) 
with a limited number of subjects available. 
In two DDT case studies, we employed the 
model to estimate human elimination half-
lives for p,p´‑DDE and p,p´-DDT using 
intake estimates and CSTD from Sweden and 
the United Kingdom as empirical data. Results 
obtained from both CSTD sets are consistent 
with each other and with estimates from LD.

Data quality and availability. The CSTD 
from Sweden presented in Figure 3 represent 
only primiparous women with a median age 
of 28.8 years from the same region (Uppsala 
County). Hence, they exhibit a relatively high 
level of consistency. This is because the recur-
rent measurements had been planned pro-
spectively aiming to establish time trends. In 
contrast, most studies in the literature that 
present CSTD-based half-lives have been 
assembled retrospectively. In many cases only 
summary statistics are reported, which makes 
it difficult to compare different sets of CSD. 
As a result, confounding effects from different 
age structures and other differences between 
the studies may occur. In particular, an incon-
sistent age structure would introduce large 
uncertainties in CSTD-derived half-lives of 
slowly eliminated chemicals like POPs.

Therefore, in the future, cross-sectional 
studies designed to evaluate time trends of 
POPs in populations should be conducted in 
such a way that they yield consistent sets of 
CSTD. Measuring levels in blood and human 
milk every year in sufficiently large groups of 
young adults that meet clearly defined physio-
logic and lifestyle criteria is a particularly effec-
tive monitoring strategy. Preferably, cohorts 
of young adults should be monitored because 
they meet postban conditions first. Total diet 

studies, which are already performed in many 
countries on a regular basis, should be coordi-
nated with these biomonitoring programs to 
ensure optimal use of resources.

Conclusions
The present study demonstrates that CSTD 
used in combination with exposure data 
can provide quantitative information about 
human exposure trends and elimination 
kinetics that has not been exploited so far. We 
have demonstrated that, under postban con-
ditions, the CSTD-based half-life is equiva-
lent to the population exposure half-life and 
that the problem of scarcity and uncertainty 
in estimates of human elimination kinetics 
of POPs can be reduced by using CSTD in 
combination with exposure data to derive 
estimates that represent the adult popula-
tion under background exposure conditions. 
Accurate estimates of exposure trends and 
human elimination kinetics are only possi-
ble when the model is applied to consistent 
CSTD; the acquisition of consistent CSTD 
requires prospective design of the monitoring 
programs. Programs such as NHANES and 
the forthcoming effectiveness evaluation of 
the Stockholm Convention offer opportuni-
ties to apply the conceptual framework pre-
sented here to improve the interpretation of 
biomonitoring data.
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